Chapter 4
Image Enhancement in the
Frequency Domain



4.1 Background

o 2-D transform can be applied to image
enhancement, restoration, encoding, and
description.

* Fourier transform (FT)

— Fourier's idea —fig. 4.1.




FIGURE 4.1 The function at the bottom is the sum of the four functions above it.

Fourier’s idea in 1807 that periodic functions could be represented as a weighted sum
of sines and cosines was met with skepticism.



4.2 Introduction to the Fourier transform

©) Let f(x) be a continuous function of a real variable x. The Fourier
transtorm of f(x), denoted as 3{1(x)}, 1s defined by

() = F(u) =15 F(x)exp[— 2xux]dx
where j=+/—1
© Given F(u), f(x) can be obtained by using inverse Fourier transform
5~ {F(n) ) =1(x)= J-ﬂ: Fluwexpl 2rux|du

© f(x) 1s real, F(u) is complex



4.2 Introduction to the Fourier transform

©) F(u) = R(u) + jI(u)

= |F(u)| e~|¢(u)
© ¢(u) = tun']{:[u]]—‘ ’t phase angle %
u

1/2

O |F(u)| = ‘Rz{u) + 12 (u) ** Fourier spectrum of f(x) #&

© P(u) = |F(u]||2 *it power spectrum of f{x) it

©) u is called the frequency variable

© Fig. 3.1 shows a simple function and its Fourier spectrum

© Let f(x.y) be a continuous function of two real variables x and y.



Example 1

J ()
Fay=[" f(x)exp[-j2mux] dx "
= ::A exp[-j27ux] dx 0 x
- jz-iu exp(<j2mux) | = jZ-?ru | exp(+j27ux)—1]
- Lenp(m) - expC-imn Joxp ()
A

=—sin (7ux ) exp(—jrux)

Tu

A .
—sm(zux)
T

‘F(u)‘ =

S1N TUX

|exp (— Jrux )| =AX

TUX

=AX |sinc ;rux|



4.2 Introduction to the Fourier transform

v Example:
£@) )
l AX—\..,__:I
' >
- i

0 X 3/X-2X -1/ X 0 1IX 2/X 3/X



4.2 Introduction to the Fourier transform

2-D Fourier transform of f(x,y), denoted as 3J3{f(x,y)}, 1s
defined by

SF(x, )Y = Fluv) =15 1% F(x, v)exp[— 27 (ux +vv)dxdy

©) Given F(u,v), f(x,y) can be obtained by using inverse Fourier
transform

A (F ()= Fxy) =150 1% Fluv)exol 2a(ux +vy)dudy

L=



4.2 Introduction to the Fourier transform

© F(u,v) = R(u,v) + jl(u,v)
=|F(u,v)| I AUY)
[(u,v) w

R(u.v) »% phase angle 5

© ¢(u,v) = tan'l{

1/2

© |F(u,1-']| = |R2(_u,v} + I2 (u,v) ¢ Fourter spectrum of f(x,y)

® P(u,v)=|F{_u,v)‘2 i power spectrum of f(x,v) st

© v and v are called the frequency variables

Example 4.1. Fourier spectra of two simple 1-D functions. (Fig. 4.2)
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FIGURE 4.2 (a) A
discrete function
of M points, and
(b) 1ts Fourier
spectrum. (¢) A
discrete function
with twice the
number of
Nnonzero points,
and (d) its Fourier
spectrum.
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The spectrum displayed
as an intensity function

11



4.2 Introduction to the Fourier transform

 The discrete Fourier transform (DFT)

— For 1-D transform: Let the sequence{f(0),f(1),...,f(N-1)} be n
real points, the discrete Fourier transform pair is given by

N-1
F(u) % > f(x)exp|—j2mux/N]
for u=0,1,2,....N-1, and
1 N-1
f(xy= > F(u)exp| j2mix/N]
=0

for x=0,1.2.....N-1
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l 3 DFT  Exp. I
F(0) =Z f(x)exp[0]

/()
=[f(0)+(1)+(2)+1(3)] e 0 0
=(2+3+4+4)=13 31 O
F(1) =) f(x)exp[-j27x/4] 2
=2¢’+3¢ 2 +4em +4e 2
=)_3j-4+4] 1 2 3 "

F(2)= z f(x)exp [—j4?rx/4]
=2e" +3e /" +4e 7 + 477"
= 2-3+4-4=-1]

F(3)=-2-

13



4.2 Introduction to the Fourier transform

— For 2-D transform: in the two-variable case the
discrete Fourier transform pair is

1 1','\'F—11'1'\'F 1
Fluvy== % Y f(x,y)exp[—j2a(ux+vy)/ N]
NV x=0y=0

toru,v=10,1,2,...N-1, and

. | N-IN-1
JTy)== 2 2 Fluy) Jexp| j2m(ux+vy)/ N]
N =0 v=0

for x,y =0,1,...,N-1.
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4.2 Introduction to the Fourier transform

(1) A continuous function f(x,y) 1s discretized into a sequence

L (xg.), J(xg + A%, pg) . f(xy + AX,yy+AY),..., .f'[_'rn+|.-'lef— | 5.J:~_\'n+|.-"h"—1|i‘-._1'}‘.

(2) Detine
g(x,y)=f(x, + xAx,y, + yAy) x=1..M-1, y=1,.. ,N-1

(3) The discrete Fouriter transform G(u,v) of g(x,y) satisfies

; Ay !

G(u,v) = F(uAu,vAv) and Au= : —
'1'1{ Ax '1'1{ ﬂ:l '

Example 4.2. Centered spectrum of a simple 2-D functions. (Fig. 4.3)
Example 4.3. Fourier spectrum (Fig. 4.4)
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FIGURE 4.3

(a) Image of a
20 % 40 white
rectangle on a
black background
of size 512 X 512
pixels.

(b} Centered
Fourier spectrum
shown after
application

of the log
transformation
given in

Eq. (3.2-2).
Compare with
Fig. 4.2

Y ——
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FIGURE 4.4

(a) SEM image of
a damaged
integrated circuit.
(b) Fourier
spectrum of (a).
(Original image
courtesy of Dr. l.
M. Hudak,
Brockhouse
[nstitute for
Materials
Research,
McMaster
University,
Hamilton,
Ontario, Canada.)
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’ ) Filtering In the Frequency Domain

G(u,v)= H(ﬂu, v)F (u,v)

Filter
function
H{u v)

[nverse
Fourier
transform

Fourier
transiorm

flx.y] glx.y)
[nput Enhanced
image image

FIGURE 4.5 Basic steps for filtering in the frequency domain.
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FIGURE 4.6
Result of filtering
the image in

Fig. 4.4{a) with a
notch filter that
set to O the
F(0,0) termin
the Fourier
transform.
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Relation between average value of a function and
its Fourier transtorm:

N-1N-

_ 1 LS
fy)=—52.2.7()

1"@1’\?1

ZZ WS WS

i\" x=0 y=0

= f(x, y)— F(O 0)

N
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Convolution Theorem

f(x,y) s h(x,_y) & F(u,v)H(u,v)

Lowpass Highpass

Hiu)
Il

Frequency

Spatial
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FIGURE 4.7 (a) A two-dimensional lowpass filter function. (b} Result of lowpass filtering the image in Fig. 4.4{a).
(c) A two-dimensional highpass filter function. (d) Result of highpass filtering the image in Fig. 4.4{a).
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FIGURE 4.8

Result of highpass
filtering the image
in Fig. 4.4(a) with
the filter in

Fig. 4.7(c),
modified by
adding a constant
of one-half the
filter height to the
filter function.
Compare with
Fig. 4.4(a).
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FIGURE 4.9

(a) Gaussian
frequency domain
lowpass filter.

(b} Gaussian
frequency domain
highpass filter.

(c) Corresponding
lowpass spatial
filter.

(d) Corresponding
highpass spatial
filter. The masks
shown are used in
Chapter 3 for
lowpass and
highpass filtering.
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4.3 Smoothing Frequency-Domain Filters

 |deal lowpass filters (ILPF)
— Fig. 4.10

— Example 4.4. Image power as a function of distance
from the origin of the DFT. (Fig. 4.11) (Fig. 4.12)

27



Cutoff frequency
¥
S S .y - D, v)

abc

FIGURE 4.10 (a) Perspective plot of an wdeal lowpass filter transfer function. (b} Filter displaved as an

imege. (¢) Fller radial cross section.
; £0



|deal lowpass filters

M-1N-1
Total image power : B, = > > P(u,v)

u=0 v=0

E 1 d _ZZP{H.*.'}
NCl1OSe OWEr | =100 —= .
P o n 92 0% 94.6%

96.4%

@
Y :

daaaaaaa

ah

FIGURE 4.11 (a) An image of size 300 > 500 pixels and (b) its Fourier spectrum. The
superimposcd circles have radii values of 5. 13, 30, 80, and 230, which enclose 92.0.
Ud 6, Yo4, YN0 and 9955 of the image power, respectively,

98.0%

99.5%
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FIGURE 4.12 (a) Original image. (b)—(f) Results of ideal lowpass filtering with cutoff

d frequencies set at radii values of 5, 15, 30, 80, and 230, as shown in Fig. 4.11(b). The

[ power removed by these filters was 8,5.4,3.6.2, and 0.5% of the total. respectively.




Ringing and blurring

LAY FARN

kv v
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FIGURE 4.13 (a) A frequency-domain ILPF of radius 5. (b) Corresponding spatial
filter {note the ringing). (¢} Five impulses in the spatial domain, simulating the values

of five pixels. (d} Convolution of (b} and (c} in the spatial domain.
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4.3 Smoothing Frequency-Domain Filters

« Butterworth lowpass filters (BLPF)
— Example 4.5. (Fig. 4.15) (Fig. 4.16)

o Gussian lowpass filters (GLPFS)
— Example 4.6. (Fig. 4.17) (Fig. 4.18) (Fig. 4.19)

« Additional Examples of Lowpass Filtering
— Fig. 4.20
— Fig. 4.21
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Butterworth lowpass filters of order 7

|
1+ [[) (f,f;u)/[)d

H(u,v)=

2n

Hiu, v)
Jh
i
u-“":.
D, 1)
L _ .\“ 1 1.
aboc Cutoff frequency

FIGURE 4.14 (a) Perspective plot of a Butterworth lowpass filter transfer function. (b) Filter displayed as an
image. (¢) Filter radial cross sections of orders 1 through 4.
33
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Compare with Fig. 4.12.
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a b FIGURE 4.15 (a) Original image. {b)—(f) Resulls of filtering with BLPFs of order 2,
with cutoff frequencies at radii of 3, 15, 30, 80, and 230, as shown in Fig. 4.11{b}.
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o o el )

FIGURE 4.16 (a)—(d) Spatial representation of BLPFs of order 1, 2.5, and 20, and corresponding gray-level
profiles through the center of the filters (all filters have a cutoff frequency of 5). Note that ringing increases
as a function of filter order.
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n =1

D, =20
D, = 40
D, = 100

=, v

abc

FIGURE 4.17 (a) Perspective plot of a GLPF transfer function. (b) Filter displaved as an image. (¢) Filter
radial cross sections for various values of D,,.
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FIGURE 4.18 (a) Original image. (b)—([) Results of fltering with Caussian lowpass

filters with cutoll frequencies set at radii values of 5. 15, 30, 80, and 230, as shown in

Fig. 411(b). Compare with Figs. 4.12 and 4.15.




Character recognition

SEE

FIGURE 4.19

(a) Sample text of
poor resolution
(note broken
characters in
magnified view).
(b) Result of
filtering with a
GLPF (broken
character
segments were
joined).

Historicaliy, certain computer
programs were written using
only two digits rather than
four to define the applicable
yaar. Accordingily, the
company's software may
recognize a date using "00"
as 1900 rather than the vEgr

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the yEar

e &

—fea
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abc

FIGURE 4.20 (a) Original image {1028 x 732 pixels). (b) Result of filtering with a GLPF with D, = 100.
(c) Result of filtering with a GLPF with D, = 80. Note reduction in skin fine lines in the magnified sections
of (b) and (c).



) ¢ Reducing the effect of scan lines

i

FIGURE 4.21 (a) Image showing prominent scan lines. (b) Result of using a GLPF with D, = 30. (¢) Result
of using a GLPF with Dy = 10. (Original image courtesy of NOAA.)
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FIGURE 4.2 Top row: Perspective plot. image representation. and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.
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4.4 Sharpening Freqguency-Domain Filters

« Highpass Filtering
e Fig. 4.22
e Fig. 4.23

— Ideal highpass filters
e Fig. 4.24

— Butterworth highpass filters
* Fig. 4.25

— Gaussian highpass filters
e Fig. 4.26
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FIGURE 4.23 Spatial representations of typical (a) ideal, (b) Butterworth, and (c¢) Gaussian frequency
domain highpass filters, and corresponding gray-level profiles.
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Hiuyv)=

_JO if D(u,v)<D c--umEl
- 1\1 ifD(H,‘l.z‘) p Dﬂ ooe a
AR

azaaaaaad

A" b
- & 4o .
cl [ [ :

. L el |

abc

FIGURE 4.24 Results of ideal highpass filtering the image in Fig. 4.11¢a) with D, = 13, 30, and 80,
respectively. Problems with ringing are quite evidentin (a) and (b).

[1 ifD(u,v)<D,

|0 ifD(u,v)> D,
ILPE
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Butterworth highpass filters

1 _ [D(u.v)/D, |" i i canmEH
1+[D(u.1‘]/DD]2” 1+D_?(H.*r)/DﬁTrr 1+[DG/D(H.1']T” Ao a ;:-_
I

azaaaaaad

H(u.v)=1-

1

l—|—[D@/D(zms)]hI

H(u,v)=

F1110R0

abc

FIGURE 4.25 Results of highpass filtering the image in Fig, 4.11(a) using a BHPF of order 2 with D, = 15,
30 and 80, respectively. These resalts are much smoother than those obtamned with an [ILIPF
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Gaussian highpass filters

2 2 c-=nml
H (u,v) =1—¢ 7 @)oo S
AT

azadaaaad

abe

FIGURE 4.26 Results of highpass filtering the image of Fig. 4.11(a) using a GHPF of order 2 with I, = 15,
30, and 80, respectively. Compare with Fips. 4.24 and 4.23.
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4.4 Sharpening Freqguency-Domain Filters

 The Laplacian in the frequency domain
— Fiqg. 4.27
— Example 4.7: Laplacian (Fig. 4.28)

 Unsharp masking, High-boost filtering, and High-
frequency emphasis filtering

— Example 4.8: (Fig. 4.29)
— Example 4.9: (Fig. 4.30)
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Laplacian in the frequency domain

_n?”f(x-) E{f{x)}=F{u)=j:f{x)exp[—jimm]dx
3 : — } = (j2;rm)" F(u) §M{F} = f() = [ Fu)exp| j2rux]du
3 .
_62 y } @2 y J 2 2 A b ‘]
R J;(f’ y) + f@gf’ "1 )} =(j27u) F(u,v)+(j272v) F(u,v) =47 (u‘ +v° )F(u,v)
v y?

H(u,v)=-4z7" (?f +v° )

F{f G0} =F@.) = [[ £, yyexp[ —j2r (wc+vy) ] dudy
FHUFu W} = f(x,»)= ﬁ F(u,v) exp[jz,?r{ux +vy ]] dudv

H(H,V):—I:(H—M/Z)E +(v—N/2)2]

Vif(x,y)=3" {—[(?J—M/Z)E +(v—N/2)2JF(u,v)}

M

M-1N-1 2mux

x=0 y=0
M-1N4 dmee Imy

fxn=>> Fuv)e ¥ e ¥ x

u=0 v=0

2my

F(u,v}zﬁZZj‘”(x,y)e Ve

:ﬂ:l:---aM_la,},:ﬂaL---r*ﬂl'r_]-

¥ou=01,._.M-1v=0.1__.N-1
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H(H?v) = —[(H —M/Z)z ‘|‘(’P’—N/2)1

FIGURE 4.7 (a) 3-D plot of Laplacian in the frequency domain. (b) Image representation of [a).

{c) Laplactan in the spatial domam obtained trom the mverse DET of (b, (d) Zoomed section of the origin

of (c). (e} Gray-level profile through the center of (d). (0 Laplacian mask used in Section 3.7




H(u.v)=1 —[[u —;‘VI/E): +{1J—N/2]2]

ah
cd

FIGURE 4.28

{a) Image of the
MNorth Pole of the
moon

i(h) Laplacian
filterad image.
(¢} Laplacian
image scaled.

(d) Image
enhanced by
using Eq. (4.4-12),
(Original image
courtesy of
MNASAL)

g(r.y)= 3 [1=((u=2/2)" + (v=¥/2)") | F (wv)]




(1 3)=f (63)-F (%)
o53) = (50) fy (59

H,_(u,v)=1-H_(u.v)

Juw(.3)=Af (x,¥)- £, (x.¥)

Ja (x.2)=(A=1)  (x.3)+ [ (x.) = fy (%.7)
=(4-1)f (% y)+ fi, (%, )

Hy, (u,v) :(A—1)+th (u,v)




a>0 and b >a

ah
c d

FIGURE 4.30

(a) A chest X-rav
image. (b) Result
of Butterworth
highpass filtering.
() Result of high-
frequency
emphasis filtering,
(d) Result of
performing
histogram
equalization on
(¢). (Original
image courtesy
Dr. Thomas

R Giest, Division
of Anatomical
Sciences,
University of
Michigan Medical
School.)



Homomorphic Filtering

1llumination reflectance

]
f(x_,y) =i(x,y)-r(x,p) > Tj{f(ay)} - i‘i{i(x,y)} - i‘f{r(x,y)}

S(5) I 50) i) o)

%)

(u,v)=H (u.v)Z(u,v)=H(u.v)F,(u.v)+H(u,v)F,(u,v)

|

s(x, }) =37 {S(H,V)} =37 {H(u,v)F; (u,v)} + 37 {H(u,v) E (u,v)} = .f'(x_.,_],-') +r'(x, ],)

s(x,¥) "xy) _r(xy) :
— ? L x - L : r (
0

I Fg(x.,_}’)zg — & e xa_v)'rﬂ (1‘,_}")

FIGURE 4.31
H hic

o) B e S DRE C n) ESOFD ES e [S g e
for image

enhancement. -




H(w v)

YHE — — — — — —

YL

a:-h

FIGURE 4.33

(a) Original
image. (b) Image
processed by
homomorphic
filtering (note
details inside
shelter).
(Stockham.)

FIGURE 4.32
Cross section of a
circularly
symmetric filter
function. D(u, v)
is the distance
from the origin of
the centered
transform.
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FIGURE 4.34

(a) Fourier
spectrum showing
back-to-back

half periods in

the interval

|0, M — 1].

(D) Shifted
spectrum showing
a full period in the
same interval.

(c) Fourier
spectrum of an
image, showing the
same back-to-back
properties as (a),
but in two
dimensions.

(d) Centered
Fourier spectrum.

|F(u) |F(u)

: A P ’
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i y ! i v . . H ! . {
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—MJ2 0 Mz A, 0 M2 M1
1 - i
ft———— e period ———- f———— e perind ———m
—
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FIGURE 4.35
Computation of
flx.y) Fix.v) F(u.v) the 2-D Fourier
transform as a
series of 1-D
transforms.

1-D 1-D
oW column
transforms transforms
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4.2 Introduction to the Fourier transform

v’ The 2-D DFT Calculation with two 1-D DFT:

1"-.-13'-1

F(u,v)= ZZf('{ VIWSW

x—D'L ]

= F(x.v)=— Z_f(-n.}*)l'ff‘j{i"’

Z}F(H,V)ZN( 1 EF(Y VW, ”"J

x—ﬂl

(0, (N 1) (0, (N 1) (0, (N — 1)
- - -
Row transforms Column
ix, y) — Fix, v) e | F(U, V)
Multiplication by N transforms

S7
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FIGURE 4.36 Left: ——— -y — | : e
convolution of oo oo
two discrete him) him)
functions. Right: i }
convolution of the
same functions, s .
taking into
account the , — N . -
imp]if:d il Jiw i 1] Sl Jini
periodicity of the h(—m) hi—m)
DFT. Note in (j) * 4
how data from
adjacent periods )
corrupt the result ;
of convolution. S - : ] 4 -t
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FIGURE 4.37
Result of
performing
convolution with
extended
functions.
Compare

Figs. 4.37(e) and
4.36(e).
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Correct

f————B+D-1———

Result of filtering in the frequency domain without

properly padding the input images.

B
Incorrect
One of the two
N original images
|
o A
+
-
o Zero padding
Missing,
. A
- 0 =
Properly extended (padded) image
i
P Correct
P=A+C-1
X O=B+D-1
L o
| Q |

Result of filtering in the frequency domain with
properly padded input images.

ah
C

FIGURE 4.38
[llustration of the
need for function
padding.

(a) Result of
performing 2-D
convolution
without padding.
(b) Proper
function padding.
(c) Correct
convolution
result.
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ct“‘.“

FIGURE 4.39 Padded lowpass filter is the spatial domain (only the real part is shown).

FIGURE 4.40 Result of filtering with padding. The image is usually cropped to its
original size since there is little valuable information past the image boundaries.
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FIGURE 4.41

ia) Image.

(b} Template

() and

(d) Padded
images.

(2] Correlation
function displayed
as an image.

() Horizon tal
profile line
through the
highest value in
(2).showing the
point at which the
bl match took
place.

Highest correlation
value

Grray-level
profile line
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TABLE 4.1
Summary of some
important
properties of the
2-D Fourier
transform.

Property

Expression(s)

Fourier transform

[nverse Fourier
transform

Polar
representation

Spectrum

Phase angle
Power spectrum
Average value

Translation

I N1

M
Flu. vy = x. vie f2e{ux/ M ey /N
(10) = 77 3 S (x3)

=

s

F (1, v) /2 ux/M+oy/N)

flx. ¥

F(u,v) = |F(u, v)|e v

F(u.v)| = [R*u.v) + I*(u.v)]"*. R = Real(F)and
I = Imag(F)

f B [ () ]
i, v) = tan R(w.v) |
P(u,v) = |F(u. v)[
_ l M-1 N1
x,y) = F(0,0) = ——= X,y
Fley) = FO.0 =35 3 3f(x.)

f(x, y)elix/M: wN) o F (0 — g v — ’L‘u)
flx = xo.y = yo) & F(u.v)e P/t
When xy = wy = M/2and yy = v, = N /2. then
fle.v)(—1)y"Y <= Flu—- M/2.v — N/2)

flx — M/2.y — N/2) < F(uv)(~1)""
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Conjugate
svmmetry

Differentiation

Laplacian

Distributivity

Scaling

Rotation

Periodicity

Separability

F(u,v) = F (—u,—v)

IF (1. v)| = |[F(—u.—v)
“f(x, y) .
r = (ju)"F(u,v)

d"Flu, v
(—jx)"f(x.y) = %
r TABLE 4.1

Tzf(*r- }'}I — _(Hz -+ ’L"E)F(H,. 1;} (continued)

filx y) + Ll y)] = S 0] + 3 y)]
Jfilx. y) - fo(xy)] = S[fi(x )] - [ fa(x y) ]

£

Tt

1
af(x, y) = aF(u.v), flax, by) < mF(ufm v/b)
X = rcosd y = rsiné U= wCosy V= wsing
f( H + H[]) — F !'.Li' {.L- + H[]}

Flu,v) = Flu + M.v) = F(u.v + N) = Flu + M,v + N)
flx.y) = f(x + M.y) = f(x.y + N)=f(x + M.y + N)

See Egs. (4.6-14) and (4.6-15). Separability implies that we can
compute the 2-D transform of an image by first computing 1-D
transforms along each row of the image. and then computing a
I-D transform along each column of this intermediate result.
The reverse, columns and then rows, vields the same result.
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__ TABLE 4.1
'.\ (continued)

Property

Expression(s)

Computation
of the inverse
Fourier
transform using
a forward
transform
algorithm

Convolution’

Correlation’
Convolution
theorem’

Correlation
theorem’

1 1‘1-f|"'n|

Ff: u L‘]E P2riux/M+uy/N)
MN .l;] vZ:J]

This equation indicates that inputting the function F*(u, v)
into an algorithm designed to compute the forward transform
(right side of the preceding equation) vields f*(x, v)/MN.
Taking the complex conjugate and multiplving this result by
MN gives the desired inverse.

M-1 N1

flx.y)=hix.y) = 2 N flm.n)h(x — m.y — n)
m=0 n=M0
1 M N1

fx.y)eh(x.y) = = E > fH(m.n)h(x + m.y + n)

flx.y) = hix.y) = Flu.v)H(u v):

V)
flx. v}ﬂ( _1»] = Flu,v) = H(u, v)
y)

flx,y)eh{x,y) < F*(u, v)H(u.v);
fAlx.v)h(x.y) = Flu.v) o H(u. v)
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TABLE 4.1

(continued)

Some useful FT pairs:
Impuilse a(x,y) = 1
Gaussian ANV Igoe T HY) o geWi+v)2d
sin(wua) sin(wvb)
Rectangle rect|a, b] < ab jor (wa+ vB)
(wua)  (wvb)
Cosine cos(2mupx + 2mvpy) <
|
> [8(u + ug. v + vy) + 8(u — uy v — vy)]
Sine sin(27ugx + 27wvy) <
N

" Assumes that functions have been extended by zero padding.
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FIGURE 4.42
Computational
advantage of the
FFT over a direct
implementation
of the 1-D DFT.
Note that the
advantage
increases rapidly
as a function of n.
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